Darunavir Tablets 600 mg Module 1

DARUNAVIR TABLETS 600 MG

MODULE-1

1.5. Product Information

1.5.1 Prescribing information (Summary of products characteristics)

Module 1

1. Name of the medicinal product

INN Name : Darunavir amorphous

Propriority Name: Darunavir Tablets 600 mg

Strength : 600 mg

2. Qualitative and quantitative composition

Each film coated tablet contains 600 mg of Darunavir

For Excipients kindly refer to 6.1 list of excipients

3. Pharmaceutical form

Film coated tablet.

Description: Orange, oval shaped, biconvex, film coated tablets de-bossed with "J" on one side and "7" on the other side.

4. Clinical particulars

4.1 Therapeutic indications

Darunavir, co-administered with low dose ritonavir is indicated in combination with other antiretroviral medicinal products for the treatment of patients with human immunodeficiency virus (HIV-1) infection.

Darunavir 600 mg tablets may be used to provide suitable dose regimens (see section 4.2):

- For the treatment of HIV-1 infection in antiretroviral treatment (ART)-experienced adult patients, including those that have been highly pre-treated.
- For the treatment of HIV-1 infection in paediatric patients from the age of 3 years and at least 15 kg body weight.

In deciding to initiate treatment with Darunavir co-administered with low dose ritonavir, careful consideration should be given to the treatment history of the individual patient and the patterns of mutations associated with different agents. Genotypic or phenotypic testing (when available) and treatment history should guide the use of Darunavir.

4.2 Posology and method of administration

Therapy should be initiated by a health care provider experienced in the management of HIV infection. After therapy with Darunavir has been initiated, patients should be advised not to alter the dosage, dose form or discontinue therapy without discussing with their health care provider.

Module 1

Posology

Darunavir must always be given orally with low dose ritonavir as a pharmacokinetic enhancer and in combination with other antiretroviral medicinal products. The Summary of Product Characteristics of ritonavir must, therefore, be consulted prior to initiation of therapy with Darunavir.

Darunavir is also available as an oral suspension for use in patients who are unable to swallow Darunavir tablets (please refer to the Summary of Product Characteristics for Darunavir oral suspension).

ART-experienced adult patients

The recommended dose regimen is 600 mg twice daily taken with ritonavir 100 mg twice daily taken with food. Darunavir 600 mg tablets can be used to construct the twice daily 600 mg regimen.

The use of 75 and 150 mg tablets to achieve the recommended dose is appropriate when there is a possibility of hypersensitivity to specific colouring agents, or difficulty in swallowing the 600 mg tablets.

A dose regimen of 800 mg once daily with cobicistat 150 mg once daily or ritonavir 100 mg once daily taken with food may be used in patients with prior exposure to antiretroviral medicinal products but without darunavir resistance associated mutations (DRV-RAMs)* and who have plasma HIV-1 RNA < 100,000 copies/ml and CD4+ cell count ≥ 100 cells x $10^6/l$ (see the Summary of Product Characteristics for Darunavir 400 mg and 800 mg tablets).

* DRV-RAMs: V11I, V32I, L33F, I47V, I50V, I54M, I54L, T74P, L76V, I84V and L89V

ART-naïve adult patients

For dosage recommendations in ART-naïve patients see the Summary of Product Characteristics for Darunavir 400 mg and 800 mg tablets.

ART-naïve paediatric patients (3 to 17 years of age and weighing at least 15 kg)

The weight-based dose of Darunavir and ritonavir in paediatric patients is provided in the table below

Module 1

Recommended dose for treatment-naïve paediatric patients (3 to 17 years) with Darunavir tablets and ritonavir ^a		
Body weight (kg) Dose (once daily with food)		
\geq 15 kg to \leq 30 kg	600 mg Darunavir/100 mg ritonavir once daily	
\geq 30 kg to \leq 40 kg	675 mg Darunavir /100 mg ritonavir once daily	
≥ 40 kg	800 mg Darunavir /100 mg ritonavir once daily	

aritonavir oral solution: 80 mg/ml

ART-experienced paediatric patients (3 to 17 years of age and weighing at least 15 kg)

Darunavir twice daily taken with ritonavir taken with food is usually recommended.

A once daily dose regimen of Darunavir taken with ritonavir taken with food may be used in patients with prior exposure to antiretroviral medicinal products but without darunavir resistance associated mutations (DRV-RAMs)* and who have plasma HIV-1 RNA < 100,000 copies/ml and CD4+ cell count ≥ 100 cells x 10^6 /l.

* DRV-RAMs: V11I, V32I, L33F, I47V, I50V, I54M, I54L, T74P, L76V, I84V and L89V

The recommended dose of Darunavir with low dose ritonavir for paediatric patients is based on body weight and should not exceed the recommended adult dose (600/100 mg twice daily or 800/100 mg once daily)

Recommended dose for treatment-experienced paediatric patients (3 to 17 years of age) for Darunavir tablets and ritonavir ^a		
Body weight (kg)	Dose (once daily with food)	Dose(twice daily with food)
\geq 15 kg- $<$ 30 kg	600 mg Darunavir /100 mg ritonavir once daily	375 mg Darunavir /50 mg ritonavir twice daily
\geq 30 kg-< 40 kg	675 mg Darunavir /100 mg ritonavir once daily	450 mg Darunavir /60 mg ritonavir twice daily
≥ 40 kg	800 mg Darunavir /100 mg ritonavir once daily	600 mg Darunavir /100 mg ritonavir twice daily

^a with ritonavir oral solution: 80 mg/ml

For ART-experienced paediatric patients HIV genotypic testing is recommended. However, when HIV genotypic testing is not feasible, the Darunavir /ritonavir once daily dosing regimen is recommended in HIV protease inhibitor-naïve paediatric patients and the twice daily dosing regimen is recommended in HIV protease inhibitor-experienced patients.

Module 1

Advice on missed doses

In case a dose of Darunavir and/or ritonavir was missed within 6 hours of the time it is usually taken, patients should be instructed to take the prescribed dose of Darunavir and ritonavir with food as soon as possible. If this was noticed later than 6 hours after the time it is usually taken, the missed dose should not be taken and the patient should resume the usual dosing schedule.

This guidance is based on the 15 hour half-life of darunavir in the presence of ritonavir and the recommended dosing interval of approximately 12 hours.

Special populations

Elderly

Limited information is available in this population, and therefore, Darunavir should be used with caution in this age group (see sections 4.4 and 5.2).

Hepatic impairment

Darunavir is metabolised by the hepatic system. No dose adjustment is recommended in patients with mild (Child-Pugh Class A) or moderate (Child-Pugh Class B) hepatic impairment, however, Darunavir should be used with caution in these patients. No pharmacokinetic data are available in patients with severe hepatic impairment. Severe hepatic impairment could result in an increase of darunavir exposure and a worsening of its safety profile. Therefore, Darunavir must not be used in patients with severe hepatic impairment (Child-Pugh Class C) (see sections 4.3, 4.4 and 5.2).

Renal impairment

No dose adjustment is required in patients with renal impairment (see sections 4.4 and 5.2).

Paediatric patients

Darunavir /ritonavir should not be used in children with a body weight of less than 15 kg as the dose for this population has not been established in a sufficient number of patients (see section 5.1). Darunavir /ritonavir should not be used in children below 3 years of age because of safety concerns (see sections 4.4 and 5.3).

Darunavir exposures in treatment-naïve adolescents 12 to 17 years weighing at least 40 kg receiving Darunavir 800 mg once daily have been determined and were found to be within the therapeutic range as has been established in adults receiving Darunavir 800 mg once daily. As a consequence, since Darunavir once daily has also been registered for use in treatment-experienced adults without darunavir resistance associated mutations (DRV-RAMs)* and who have plasma HIV-1 RNA < 100,000 copies/ml and CD4+ cell count ≥ 100 cells x 10^6 /l, the same indication of Darunavir once daily applies to treatment-experienced children 3 to 17 years weighing at least 15 kg.

* DRV-RAMs: V11I, V32I, L33F, I47V, I50V, I54M, I54L, T74P, L76V, I84V and L89V

Pregnancy and postpartum

No dose adjustment is required for darunavir/ritonavir during pregnancy and postpartum. Darunavir should be used during pregnancy only if the potential benefit justifies the potential risk (see sections 4.4, 4.6 and 5.2).

Method of administration

Patients should be instructed to take Darunavir with low dose ritonavir within 30 minutes after completion of a meal. The type of food does not affect the exposure to darunavir (see sections 4.4, 4.5 and 5.2).

4.3 Contraindications

Hypersensitivity to the active substance or to any of the excipients listed in section 6.1.

Patients with severe (Child-Pugh Class C) hepatic impairment.

Combination of rifampicin with Darunavir with concomitant low dose ritonavir (see section 4.5).

Co-administration with the combination product lopinavir/ritonavir (see section 4.5).

Co-administration with herbal preparations containing St John's wort (*Hypericum perforatum*) (see section 4.5).

Co-administration of Darunavir with low dose ritonavir, with active substances that are highly dependent on CYP3A for clearance and for which elevated plasma concentrations are associated with serious and/or life-threatening events. These active substances include e.g.:- alfuzosin (alpha 1-adrenoreceptor antagonist)

- -amiodarone, bepridil, dronedarone, quinidine, ranolazine, systemic lidocaine (antiarrhythmics/antianginals)
- astemizole, terfenadine (antihistamines)
- colchicine when used in patients with renal and/or hepatic impairment (antigout) (see section 4.5)
- ergot derivatives (e.g. dihydroergotamine, ergometrine, ergotamine, methylergonovine)
- elbasvir/grazoprevir (hepatitis C virus direct-acting antiviral)
- cisapride (gastrointestinal motility agent)
- lurasidone, pimozide, quetiapine, sertindole (antipsychotics/neuroleptics) (see section 4.5)
- triazolam, midazolam administered orally (sedatives/hypnotics) (for caution on parenterally administered midazolam, see section 4.5)
- sildenafil when used for the treatment of pulmonary arterial hypertension, avanafil (PDE-5 inhibitors)
- simvastatin and lovastatin (HMG-CoA reductase inhibitors) (see section 4.5)
- ticagrelor (antiplatelets) (see section 4.5).

4.4 Special warnings and precautions for use

While effective viral suppression with antiretroviral therapy has been proven to substantially reduce the risk of sexual transmission, a residual risk cannot be excluded. Precautions to prevent transmission should be taken in accordance with national guidelines.

Regular assessment of virological response is advised. In the setting of lack or loss of virological response, resistance testing should be performed.

Darunavir should only be used in combination with low dose ritonavir as a pharmacokinetic enhancer (see section 5.2).

Increasing the dose of ritonavir from that recommended in section 4.2 did not significantly affect darunavir concentrations and is not recommended.

Darunavir binds predominantly to α_1 -acid glycoprotein. This protein binding is concentration-dependent indicative for saturation of binding. Therefore, protein displacement of medicinal products highly bound to α_1 -acid glycoprotein cannot be ruled out (see section 4.5).

Module 1

ART-experienced patients - once daily dosing

Darunavir used in combination with cobicistat or low dose ritonavir once daily in ART-experienced patients should not be used in patients with one or more darunavir resistance

associated mutations (DRV-RAMs) or HIV-1 RNA \geq 100,000 copies/ml or CD4+ cell count < 100 cells x 10^6 /l (see section 4.2). Combinations with optimised background regimen (OBRs) other than \geq 2 NRTIs have not been studied in this population. Limited data are available in patients with HIV-1 clades other than B (see section 5.1).

Paediatric population

Darunavir is not recommended for use in paediatric patients below 3 years of age or less than 15 kg body weight (see sections 4.2 and 5.3).

Pregnancy

Darunavir should be used during pregnancy only if the potential benefit justifies the potential risk. Caution should be used in pregnant women with concomitant medications which may further decrease darunavir exposure (see sections 4.5 and 5.2).

Elderly

As limited information is available on the use of Darunavir in patients aged 65 and over, caution should be exercised in the administration of Darunavir in elderly patients, reflecting the greater frequency of decreased hepatic function and of concomitant disease or other therapy (see sections 4.2 and 5.2).

Severe skin reactions

During the clinical development program (N=3,063), severe skin reactions, which may be accompanied with fever and/or elevations of transaminases, have been reported in 0.4% of patients. DRESS (Drug Rash with Eosinophilia and Systemic Symptoms) and Stevens-Johnson Syndrome has been rarely (< 0.1%) reported, and during post-marketing experience toxic epidermal necrolysis and acute generalised exanthematous pustulosis have been reported. Darunavir /ritonavir should be discontinued immediately if signs or symptoms of severe skin reactions develop. These can include, but are not limited to, severe rash or rash accompanied by fever, general malaise, fatigue, muscle or joint aches, blisters, oral lesions, conjunctivitis, hepatitis and/or eosinophilia.

Rash occurred more commonly in treatment-experienced patients receiving regimens containing Darunavir + raltegravir compared to patients receiving Darunavir without raltegravir or raltegravir without Darunavir (see section 4.8).

Darunavir contains a sulphonamide moiety. Darunavir should be used with caution in patients with a known sulphonamide allergy.

Hepatotoxicity

Drug-induced hepatitis (e.g. acute hepatitis, cytolytic hepatitis) has been reported with Darunavir. During the clinical development program (N=3,063), hepatitis was reported in 0.5% of patients receiving combination antiretroviral therapy with Darunavir /ritonavir. Patients with pre-existing liver dysfunction, including chronic active hepatitis B or C, have an increased risk for liver function abnormalities including severe and potentially fatal hepatic adverse reactions. In case of concomitant antiviral therapy for hepatitis B or C, please refer to the relevant product information for these medicinal products.

Appropriate laboratory testing should be conducted prior to initiating therapy with Darunavir /ritonavir and patients should be monitored during treatment. Increased AST/ALT monitoring should be considered in patients with underlying chronic hepatitis, cirrhosis, or in patients who have pre-treatment elevations of transaminases, especially during the first several months of Darunavir /ritonavir treatment.

If there is evidence of new or worsening liver dysfunction (including clinically significant elevation of liver enzymes and/or symptoms such as fatigue, anorexia, nausea, jaundice, dark urine, liver tenderness, hepatomegaly) in patients using Darunavir /ritonavir, interruption or discontinuation of treatment should be considered promptly.

Patients with coexisting conditions

Hepatic impairment

The safety and efficacy of Darunavir have not been established in patients with severe underlying liver disorders and Darunavir is therefore contraindicated in patients with severe hepatic impairment. Due to an increase in the unbound darunavir plasma concentrations, Darunavir should be used with caution in patients with mild or moderate hepatic impairment (see sections 4.2, 4.3 and 5.2).

Module 1

Renal impairment

No special precautions or dose adjustments are required in patients with renal impairment. As darunavir and ritonavir are highly bound to plasma proteins, it is unlikely that they will be significantly removed by haemodialysis or peritoneal dialysis. Therefore, no special precautions or dose adjustments are required in these patients (see sections 4.2 and 5.2).

Haemophiliac patients

There have been reports of increased bleeding, including spontaneous skin haematomas and haemarthrosis in patients with haemophilia type A and B treated with PIs. In some patients additional factor VIII was given. In more than half of the reported cases, treatment with PIs was continued or reintroduced if treatment had been discontinued. A causal relationship has been suggested, although the mechanism of action has not been elucidated. Haemophiliac patients should, therefore, be made aware of the possibility of increased bleeding.

Weight and metabolic parameters

An increase in weight and in levels of blood lipids and glucose may occur during antiretroviral therapy. Such changes may in part be linked to disease control and life style. For lipids, there is in some cases evidence for a treatment effect, while for weight gain there is no strong evidence relating this to any particular treatment. For monitoring of blood lipids and glucose reference is made to established HIV treatment guidelines. Lipid disorders should be managed as clinically appropriate.

Osteonecrosis

Although the aetiology is considered to be multifactorial (including corticosteroid use, alcohol consumption, severe immunosuppression, higher body mass index), cases of osteonecrosis have been reported particularly in patients with advanced HIV disease and/or long-term exposure to combination antiretroviral therapy (CART). Patients should be advised to seek medical advice if they experience joint aches and pain, joint stiffness or difficulty in movement.

Immune reconstitution inflammatory syndrome

In HIV infected patients with severe immune deficiency at the time of initiation of combination antiretroviral therapy (CART), an inflammatory reaction to asymptomatic or residual opportunistic pathogens may arise and cause serious clinical conditions, or aggravation of symptoms. Typically, such reactions have been observed within the first weeks or months of initiation of CART. Relevant

Module 1

examples are cytomegalovirus retinitis, generalised and/or focal mycobacterial infections and pneumonia caused by *Pneumocystis jirovecii* (formerly known as *Pneumocystis carinii*). Any inflammatory symptoms should be evaluated and treatment instituted when necessary. In addition, reactivation of herpes simplex and herpes zoster has been observed in clinical studies with Darunavir co-administered with low dose ritonavir.

Autoimmune disorders (such as Graves' disease) have also been reported to occur in the setting of immune reactivation; however, the reported time to onset is more variable and these events can occur many months after initiation of treatment (see section 4.8).

Interactions with medicinal products

Several of the interaction studies have been performed with darunavir at lower than recommended doses. The effects on co-administered medicinal products may thus be underestimated and clinical monitoring of safety may be indicated. For full information on interactions with other medicinal products see section 4.5.

Efavirenz in combination with Darunavir /ritonavir 800/100 mg once daily may result in sub-optimal darunavir C_{min} . If efavirenz is to be used in combination with Darunavir /ritonavir, the Darunavir /ritonavir 600/100 mg twice daily regimen should be used. See the Summary of Product Characteristics for Darunavir 75 mg, 150 mg or 300 mg tablets (see section 4.5).

Darunavir tablets contain sunset yellow FCF (E110) which may cause an allergic reaction.

Life-threatening and fatal drug interactions have been reported in patients treated with colchicine and strong inhibitors of CYP3A and P-glycoprotein (P-gp; see sections 4.3 and 4.5).

4.5 Interaction with other medicinal products and other forms of interaction

Interaction studies have only been performed in adults.

Darunavir and ritonavir are inhibitors of CYP3A, CYP2D6 and P-gp. Co-administration of darunavir and ritonavir and medicinal products primarily metabolised by CYP3A and/or CYP2D6 or transported by P-gp may result in increased systemic exposure to such medicinal products, which could increase or prolong their therapeutic effect and adverse reactions.

Darunavir co-administered with low dose ritonavir must not be combined with medicinal products that are highly dependent on CYP3A for clearance and for which increased systemic exposure is associated with serious and/or life-threatening events (narrow therapeutic index) (see section 4.3).

The overall pharmacokinetic enhancement effect by ritonavir was an approximate 14-fold increase in the systemic exposure of darunavir when a single dose of 600 mg darunavir was given orally in combination with ritonavir at 100 mg twice daily. Therefore, Darunavir must only be used in combination with low dose ritonavir as a pharmacokinetic enhancer (see sections 4.4 and 5.2).

A clinical study utilising a cocktail of medicinal products that are metabolised by cytochromes CYP2C9, CYP2C19 and CYP2D6 demonstrated an increase in CYP2C9 and CYP2C19 activity and inhibition of CYP2D6 activity in the presence of Darunavir /ritonavir, which may be attributed to the presence of low dose ritonavir. Co-administration of darunavir and ritonavir and medicinal products which are primarily metabolised by CYP2D6 (such as flecainide, propafenone, metoprolol) may result in increased plasma concentrations of these medicinal products, which could increase or prolong their therapeutic effect and adverse reactions. Co-administration of darunavir and ritonavir and medicinal products primarily metabolised by CYP2C9 (such as warfarin) and CYP2C19 (such as methadone) may result in decreased systemic exposure to such medicinal products, which could decrease or shorten their therapeutic effect.

Although the effect on CYP2C8 has only been studied *in vitro*, co-administration of darunavir and ritonavir and medicinal products primarily metabolised by CYP2C8 (such as paclitaxel, rosiglitazone, repaglinide) may result in decreased systemic exposure to such medicinal products, which could decrease or shorten their therapeutic effect.

Ritonavir inhibits the transporters P-glycoprotein, OATP1B1 and OATP1B3, and co-administration with substrates of these transporters can result in increased plasma concentrations of these compounds (e.g. dabigatran etexilate, digoxin, statins and bosentan; see the Interaction table below).

Medicinal products that affect darunavir/ritonavir exposure

Darunavir and ritonavir are metabolised by CYP3A. Medicinal products that induce CYP3A activity would be expected to increase the clearance of darunavir and ritonavir, resulting in lowered plasma concentrations of darunavir and ritonavir (e.g. rifampicin, St John's wort, lopinavir). Co-

administration of darunavir and ritonavir and other medicinal products that inhibit CYP3A may decrease the clearance of darunavir and ritonavir and may result in increased plasma concentrations of darunavir and ritonavir (e.g. indinavir, systemic azoles like ketoconazole and clotrimazole). These interactions are described in the interaction table below.

Interaction table

Interactions between Darunavir /ritonavir and antiretroviral and non-antiretroviral medicinal products are listed in the table below (not determined as "ND"). The direction of the arrow for each pharmacokinetic parameter is based on the 90% confidence interval of the geometric mean ratio being within (\leftrightarrow) , below (\downarrow) or above (\uparrow) the 80-125% range.

Several of the interaction studies (indicated by [#] in the table below) have been performed at lower than recommended doses of darunavir or with a different dosing regimen (see section 4.2 Posology). The effects on co-administered medicinal products may thus be underestimated and clinical monitoring of safety may be indicated.

INTERACTIONS AND DOSE RECOMMENDATIONS WITH OTHER MEDICINAL PRODUCTS		
_	Interaction Geometric mean change (%)	Recommendations concerning co- administration
HIV ANTIRETROVI	RALS	
Integrase strand transf	fer inhibitors	
Dolutegravir	dolutegravir AUC ↓ 32% dolutegravir C24h 38% dolutegravir Cmax ↓ 11% darunavir ↔* * Using cross-study comparisons to historical pharmacokinetic data	Darunavir co-administered with low dose ritonavir and dolutegravir can be used without dose adjustment.
Elvitegravir	elvitegravir AUC ↔ elvitegravir Cmin ↔ elvitegravir Cmax ↔ darunavir AUC ↔ darunavir Cmin 17%	When Darunavir co-administered with low dose ritonavir (600/100 mg twice daily) is used in combination with elvitegravir, the dose of elvitegravir should be 150 mg once

Module 1

	darunavir Cmax ↔	daily.
		The pharmacokinetics and dosing
		recommendations for other doses of
		darunavir or with
		elvitegravir/cobicistat have not been
		established. Therefore, co-
		administration of Darunavir with low
		dose ritonavir in doses other than
		600/100 mg twice daily and
		elvitegravir is not recommended. Co-
		administration of Darunavir with low
		dose ritonavir and elvitegravir in the
		presence of cobicistat is not
Dalta anarrin		recommended.
Raltegravir	Some clinical studies suggest raltegravir	
	•	darunavir plasma concentrations does
	darunavir plasma concentrations.	not appear to be clinically relevant.
		Darunavir co-administered with low
		dose ritonavir and raltegravir can be
		used without dose adjustments.
Nucleo(s/t)ide reverse	transcriptase inhibitors (NRTIs)	
Didanosine	didanosine AUC ↓ 9%	Darunavir co-administered with low
400 mg once daily	didanosine Cmin ND	dose ritonavir and didanosine can be
	didanosine Cmax ↓ 16%	used without dose adjustments.
	darunavir AUC ↔	Didanosine is to be administered on
	darunavir Cmin ↔	an empty stomach, thus it should be
	darunavir Cmax ↔	administered 1 hour before or 2 hours
		after Darunavir /ritonavir given with
		food.
Tenofovir disoproxil	tenofovir AUC ↑ 22%	Monitoring of renal function may be
fumarate	tenofovir Cmin ↑ 37%	indicated when Darunavir co-
·		•

Module 1

300 mg once daily	tenofovir Cmax ↑ 24%	administered with low dose ritonavir
	#darunavir AUC ↑ 21%	is given in combination with
	#darunavir Cmin ↑ 24%	tenofovir, particularly in patients
	#darunavir Cmax ↑ 16%	with underlying systemic or renal
	(↑ tenofovir from effect on MDR-1	disease, or in patients taking
	transport in the renal tubules)	nephrotoxic agents.
Abacavir	Not studied. Based on the different	Darunavir co-administered with low
Emtricitabine	elimination pathways of the other NRTIs	dose ritonavir can be used with these
Lamivudine	zidovudine, emtricitabine, stavudine,	NRTIs without dose adjustment.
Stavudine	lamivudine, that are primarily renally	
Zidovudine	excreted, and abacavir for which	
	metabolism is not mediated by CYP450,	
	no interactions are expected for these	
	medicinal compounds and Darunavir co-	
	administered with low dose ritonavir.	
Non-nucleo(s/t)ide rev	verse transcriptase inhibitors (NNRTIs)	,
Efavirenz	efavirenz AUC ↑ 21%	Clinical monitoring for central
600 mg once daily	efavirenz Cmin ↑ 17%	nervous system toxicity associated
	efavirenz Cmax ↑ 15%	with increased exposure to efavirenz
	#darunavir AUC ↓ 13%	may be indicated when Darunavir co-
	#darunavir Cmin ↓ 31%	administered with low dose ritonavir
	#darunavir Cmax ↓ 15%	is given in combination with
	(† efavirenz from CYP3A inhibition)	efavirenz.
	(↓ darunavir from CYP3A induction)	Efavirenz in combination with
		Darunavir /ritonavir 800/100 mg
		once daily may result in sub-optimal
		darunavir Cmin. If efavirenz is to be
		used in combination with Darunavir

Module 1

		/ritonavir, the Darunavir /ritonavir
		600/100 mg twice daily regimen
		should be used (see section 4.4).
Etravirine	etravirine AUC ↓ 37%	Darunavir co-administered with low
100 mg twice daily	etravirine Cmin ↓ 49%	dose ritonavir and etravirine 200 mg
	etravirine Cmax \(\) 32%	twice daily can be used without dose
	darunavir AUC ↑ 15%	adjustments.
	darunavir Cmin ↔	
	darunavir Cmax ↔	
Nevirapine	nevirapine AUC ↑ 27%	Darunavir co-administered with low
200 mg twice daily	nevirapine Cmin ↑ 47%	dose ritonavir and nevirapine can be
	nevirapine Cmax ↑ 18%	used without dose adjustments.
	#darunavir: concentrations were	
	consistent with historical data	
	(† nevirapine from CYP3A inhibition)	
Rilpivirine	rilpivirine AUC ↑ 130%	Darunavir co-administered with low
150 mg once daily	rilpivirine Cmin ↑ 178%	dose ritonavir and rilpivirine can be
	rilpivirine Cmax ↑ 79%	used without dose adjustments.
	darunavir AUC ↔	
	darunavir Cmin↓11%	
	darunavir Cmax ↔	
HIV Protease inhibito	ors (PIs) - without additional co-administra	tion of low dose ritonavir†
Atazanavir	atazanavir AUC ↔	Darunavir co-administered with low
300 mg once daily	atazanavir Cmin ↑ 52%	dose ritonavir and atazanavir can be
	atazanavir Cmax ↓ 11%	used without dose adjustments.
	#darunavir AUC ↔	
	#darunavir Cmin ↔	
	#darunavir Cmax ↔	
1		

Module 1

	T	
	Atazanavir: comparison of	
	atazanavir/ritonavir 300/100 mg once	
	daily vs. atazanavir 300 mg once daily in	
	combination with darunavir/ritonavir	
	400/100 mg twice daily.	
	Darunavir: comparison of	
	darunavir/ritonavir 400/100 mg twice	
	daily vs. darunavir/ritonavir 400/100 mg	
	twice daily in combination with	
	atazanavir 300 mg once daily.	
Indinavir	indinavir AUC ↑ 23%	When used in combination with
800 mg twice daily	indinavir Cmin ↑ 125%	Darunavir co-administered with low
	indinavir Cmax ↔	dose ritonavir, dose adjustment of
	#darunavir AUC ↑ 24%	indinavir from 800 mg twice daily to
	#darunavir Cmin ↑ 44%	600 mg twice daily may be warranted
	#darunavir Cmax ↑ 11%	in case of intolerance.
	Indinavir: comparison of	
	indinavir/ritonavir 800/100 mg twice	
	daily vs. indinavir/darunavir/ritonavir	
	800/400/100 mg twice daily.	
	Darunavir: comparison of	
	darunavir/ritonavir 400/100 mg twice	
	daily vs. darunavir/ritonavir 400/100 mg	
	in combination with indinavir 800 mg	
	twice daily.	

Module 1

Saquinavir	#darunavir AUC ↓ 26%	It is not recommended to combine
1,000 mg twice daily	#darunavir Cmin↓42%	Darunavir co-administered with low
	#darunavir Cmax ↓ 17%	dose ritonavir with saquinavir.
	saquinavir AUC ↓ 6%	
	saquinavir Cmin↓18%	
	saquinavir Cmax ↓ 6%	
	Saquinavir: comparison of	
	saquinavir/ritonavir 1,000/100 mg twice	
	daily vs. saquinavir/darunavir/ritonavir	•
	1,000/400/100 mg twice daily	
	Darunavir: comparison of	
	darunavir/ritonavir 400/100 mg twice	
	daily vs. darunavir/ritonavir 400/100 mg	5
	in combination with saquinavir 1,000 mg	
	twice daily.	
HIV Protease inhibito	rs (PIs) - with co-administration of low do	ose ritonavir†
Lopinavir/ritonavir	lopinavir AUC ↑ 9%	Due to a decrease in the exposure
400/100 mg twice	lopinavir Cmin ↑ 23%	(AUC) of darunavir by 40%,
daily	lopinavir Cmax ↓ 2%	appropriate doses of the combination
	darunavir AUC ↓ 38%‡	have not been established. Hence,
	darunavir Cmin↓51%‡	concomitant use of Darunavir co-
Lopinavir/ritonavir	darunavir Cmax ↓ 21%‡	administered with low dose ritonavir
533/133.3 mg twice	lopinavir AUC ↔	and the combination product
daily	lopinavir Cmin ↑ 13%	lopinavir/ritonavir is contraindicated
	lopinavir Cmax ↑ 11%	(see section 4.3).
	darunavir AUC ↓ 41%	
	darunavir Cmin↓55%	
	darunavir Cmax ↓ 21%	
	‡ based upon non dose normalised	

Module 1

	values	
CCR5 ANTAGONIST	I	
Maraviroc	maraviroc AUC ↑ 305%	The maraviroc dose should be 150 mg
150 mg twice daily	maraviroc Cmin ND	twice daily when co-administered
	maraviroc Cmax ↑ 129%	with Darunavir with low dose
	darunavir, ritonavir concentrations were	ritonavir.
	consistent with historical data	
α1-ADRENORECEP	ΓOR ANTAGONIST	
Alfuzosin	Based on theoretical considerations	Co-administration of Darunavir with
	Darunavir is expected to increase	low dose ritonavir and alfuzosin is
	alfuzosin plasma concentrations.	contraindicated (see section 4.3).
	(CYP3A inhibition)	
ANAESTHETIC		
Alfentanil	Not studied. The metabolism of	The concomitant use with Darunavir
	alfentanil is mediated via CYP3A, and	and low dose ritonavir may require to
	may as such be inhibited by Darunavir	lower the dose of alfentanil and
	co-administered with low dose ritonavir.	requires monitoring for risks of
		prolonged or delayed respiratory
		depression.
ANTIANGINA/ANT	IARRHYTHMIC	
Disopyramide	Not studied. Darunavir is expected to	Caution is warranted and therapeutic
Flecainide	increase these antiarrhythmic plasma	concentration monitoring, if
Digoxin	digoxin AUC ↑ 61%	Given that digoxin has a narrow
0.4 mg single dose	digoxin Cmin ND	therapeutic index, it is recommended
	digoxin Cmax ↑ 29%	that the lowest possible dose of
	(↑ digoxin from probable inhibition of	digoxin should initially be prescribed
	P-gp)	in case digoxin is given to patients on
		darunavir/ritonavir therapy. The

Module 1

		digoxin dose should be carefully
		titrated to obtain the desired clinica
		effect while assessing the overall
		clinical state of the subject.
ANTIBIOTIC		<u> </u>
Clarithromycin	clarithromycin AUC ↑ 57%	Caution should be exercised when
500 mg twice daily	clarithromycin Cmin ↑ 174%	clarithromycin is combined with
	clarithromycin Cmax ↑ 26%	Darunavir co-administered with low
	#darunavir AUC ↓ 13%	dose ritonavir.
	#darunavir Cmin ↑ 1%	
	#darunavir Cmax ↓ 17%	
	14-OH-clarithromycin concentrations	
	were not detectable when combined	
	with D arunavir /ritonavir.	
	(↑ clarithromycin from CYP3A	
	inhibition and possible P-gp inhibition)	
ANTICOAGULANT	S	
Apixaban	Not studied. Co-administration of	The use of Darunavir co-administered
Dabigatran etexilate	Darunavir with these anticoagulants may	with low dose ritonavir and these
Rivaroxaban	increase concentrations of the	anticoagulants is not recommended.
	anticoagulant.	
	(CYP3A and/or P-gp inhibition).	
Warfarin	Not studied. Warfarin concentrations	It is recommended that the
	may be affected when co-administered	international normalised ratio (INR)
	with darunavir with low dose ritonavir.	be monitored when warfarin is
		combined with Darunavir co-

Module 1

Phenobarbital	Not studied. Phenobarbital a	and D	Darunavir co-administered with low
Phenytoin	phenytoin are expected to decre	ased	lose ritonavir should not be used in
	plasma concentrations	ofc	combination with these medicines.
	darunavir.(induction of CYP2	150	
	enzymes)		
Carbamazepine	carbamazepine AUC ↑ 45%	N	No dose adjustment for Darunavir
200 mg twice daily	carbamazepine Cmin ↑ 54%	/r	ritonavir is recommended. If there is
	carbamazepine Cmax ↑ 43%	a	need to combine Darunavir
	darunavir AUC ↔	/r	ritonavir and carbamazepine, patients
	darunavir Cmin ↓ 15%	sl	hould be monitored for potential
	darunavir Cmax ↔	c	earbamazepine-related adverse
		e ⁻	events. Carbamazepine
		C	concentrations should be monitored
		a	and its dose should be titrated for
		a	dequate response. Based upon the
		fi	indings, the carbamazepine dose may
		n	need to be reduced by 25% to 50% in
		tł	he presence of Darunavir /ritonavir.
ANTIDEPRESSANT	TS .		
Paroxetine	paroxetine AUC ↓ 39%	If	f antidepressants are co-administered
20 mg once daily	paroxetine Cmin ↓ 37%	W	vith Darunavir with low dose
	paroxetine Cmax ↓ 36%	ri	itonavir, the recommended approach
	#darunavir AUC ↔	is	s a dose titration of the
	#darunavir Cmin ↔	a	intidepressant based on a clinical
Sertraline	#darunavir Cmax ↔	a	ssessment of antidepressant
50 mg once daily	sertraline AUC ↓ 49%	re	esponse. In addition, patients on a
	sertraline Cmin ↓ 49%	st	table dose of these antidepressants
	sertraline Cmax ↓ 44%	W	vho start treatment with Darunavir
Amitriptyline	#darunavir AUC ↔	W	vith low dose ritonavir should be

Module 1

Desipramine	#darunavir Cmin ↓ 6%	monitored for antidepressant
Imipramine	#darunavir Cmax ↔	response.
Nortriptyline	Concomitant use of Darunavir co-	Clinical monitoring is recommended
Trazodone	administered wirth low dose ritonavir	when co-administering Darunavir
	and these antidepressants may increase	with low dose ritonavir with these
	concentrations of the antidepressant.	antidepressants and a dose adjustment
	(CYP2D6 and/or CYP3A inhibition).	of the antidepressant may be needed.
ANTIFUNGALS	,	
Voriconazole	Not studied. Ritonavir may decrease	Voriconazole should not be combined
	plasma concentrations of voriconazole.	with Darunavir co-administered with
	(induction of CYP450 enzymes by	low dose ritonavir unless an
	ritonavir)	assessment of the benefit/risk ratio
		justifies the use of voriconazole.
Ketoconazole	ketoconazole AUC ↑ 212%	Caution is warranted and clinical
200 mg twice daily	ketoconazole Cmin ↑ 868%	monitoring is recommended. When
	ketoconazole Cmax ↑ 111%	co-administration is required the daily
	#darunavir AUC ↑ 42%	dose of ketoconazole should not
	#darunavir Cmin ↑ 73%	exceed 200 mg.
	#darunavir Cmax ↑ 21%	
	(CYP3A inhibition)	
Posaconazole	Not studied. Darunavir may increase	Caution is warranted and clinical
	antifungal plasma concentrations (P-gp	monitoring is recommended.
	inhibition) and posaconazole may	
	increase darunavir concentrations.	
	(CYP3A inhibition)	

Module 1

Itraconazole	Not studied. Concomitant systemic use	Caution is warranted and clinical
	of itraconazole and darunavir co-	monitoring is recommended. When
	administered with low dose ritonavir	co-administration is required the daily
	may increase plasma concentrations of	dose of itraconazole should not
	darunavir. Simultaneously, plasma	exceed 200 mg.
	concentrations of itraconazole may be	
	increased by darunavir co-administered	
	with low dose ritonavir.	
Clotrimazole	Not studied. Concomitant systemic use	Caution is warranted and clinical
	of clotrimazole and darunavir co-	monitoring is recommended, when
	administered with low dose ritonavir	co-administration of clotrimazole is
	may increase plasma concentrations of	required.
	darunavir.	
	darunavir AUC24h ↑ 33% (based on	
	population pharmacokinetic model)	
ANTIGOUT MEDIC	INES	
Colchicine	Not studied. Concomitant use of	A reduction in colchicine dosage or
	colchicine and darunavir co-	an interruption of colchicine
	administered with low dose ritonavir	treatment is recommended in patients
	may increase the exposure to colchicine.	with normal renal or hepatic function
		if treatment with Darunavir co-
		administered with low dose ritonavir
		is required. Patients with renal or
		hepatic impairment should not be
		given colchicine with Darunavir co-
		administered with low dose ritonavir
		(see section 4.4).
ANTIMALARIALS	1	1

Module 1

A	1 AUG 1/0/	TI 1: (: C.D. : 1
	artemether AUC ↓ 16%	The combination of Darunavir and
rine	artemether Cmin ↔	artemether/lumefantrine can be used
80/480 mg, 6 doses	artemether Cmax ↓ 18%	without dose adjustments; however,
at 0, 8, 24, 36, 48,	dihydroartemisinin AUC ↓ 18%	due to the increase in lumefantrine
and 60 hours	dihydroartemisinin Cmin ↔	exposure, the combination should be
	dihydroartemisinin Cmax ↓ 18%	used with caution.
	lumefantrine AUC ↑ 175%	
	lumefantrine Cmin ↑ 126%	
	lumefantrine Cmax ↑ 65%	
	darunavir AUC ↔	
	darunavir Cmin↓13%	
	darunavir Cmax ↔	
ANTIMYCOBACTE	RIALS	
Rifampicin	Not studied. Rifapentine and rifampicin	The combination of rifapentine and
Rifapentine	are strong CYP3A inducers and have Darunavir with concomitant low	
	been shown to cause profound decreases	ritonavir is not recommended.
	in concentrations of other protease	The combination of rifampicin and
	inhibitors, which can result in	Darunavir with concomitant low dose
	virological failure and resistance	ritonavir is contraindicated (see
	development (CYP450 enzyme	section 4.3).
	induction). During attempts to overcome	
	the decreased exposure by increasing the	
	dose of other protease inhibitors with	
	low dose ritonavir, a high frequency of	
	liver reactions was seen with rifampicin.	
Rifabutin	rifabutin AUC** ↑ 55%	A dosage reduction of rifabutin by
150 mg once every	rifabutin Cmin** ↑ ND	75% of the usual dose of 300 mg/day
other day	rifabutin Cmax** ↔	(i.e. rifabutin 150 mg once every

ANTINEOPLASTICS

and/or

Module 1

other day) and increased monitoring darunavir AUC ↑ 53% for rifabutin related adverse events is darunavir Cmin ↑ 68% darunavir Cmax ↑ 39% warranted in patients receiving the ** sum of active moieties of rifabutin combination. In case of safety issues, 25-O-desacetyl a further increase of the dosing (parent drug metabolite) interval for rifabutin The interaction trial showed a monitoring of rifabutin levels should comparable daily systemic exposure for be considered. rifabutin between treatment at 300 mg Consideration should be given to once daily alone and 150 mg once every official guidance on the appropriate other day in combination with Darunavir treatment of tuberculosis in HIV /ritonavir (600/100 mg twice daily) with infected patients. an about 10-fold increase in the daily Based upon the safety profile of exposure to the active metabolite 25-O-Darunavir /ritonavir, the increase in desacetylrifabutin. Furthermore, AUC of darunavir exposure in the presence of the sum of active moieties of rifabutin rifabutin does not warrant a dose 25-O-desacetyl adjustment for Darunavir /ritonavir. (parent drug metabolite) was increased 1.6-fold, Based on pharmacokinetic modeling, while Cmax remained comparable. this dosage reduction of 75% is also Data on comparison with a 150 mg once applicable if patients receive rifabutin daily reference dose is lacking. at doses other than 300 mg/day. (Rifabutin is an inducer and substrate of CYP3A.) An increase of systemic exposure to darunavir was observed when Darunavir co-administered with 100 mg ritonavir was co-administered with rifabutin (150 mg once every other day).

Module 1

Dasatinib	Not studied. Darunavir is expected to	Concentrations of these medicinal
Nilotinib	increase these antineoplastic plasma	products may be increased when co-
Vinblastine	concentrations.	administered with Darunavir with low
Vincristine	(CYP3A inhibition)	dose ritonavir resulting in the
		potential for increased adverse events
Everolimus		usually associated with these agents.
		Caution should be exercised when
		combining one of these antineoplastic
		agents with Darunavir with low dose
		ritonavir.
		Concominant use of everolimus and
		Darunavir co-administered with low
		dose ritonavir is not recommended.
ANTIPLATELETS		
Ticagrelor	Not studied. Co-administration with	Concomitant administration of
	darunavir boosted with low dose	Darunavir with low dose ritonavir
	ritonavir may lead to a substantial	with ticagrelor is contraindicated (see
	increase in exposure to ticagrelor	section 4.3).
		Use of other antiplatelets not affected
		by CYP inhibition or induction (e.g.
		prasugrel) is recommended.
ANTIPSYCHOTICS	NEUROLEPTICS	
Quetiapine	Due to CYP3A inhibition by darunavir,	Concomitant administration of
	concentrations of the	Darunavir with low dose ritonavir and
	antipsychotics/neuroleptics are expected	quetiapine is contraindicated as it
	to increase.	may increase quetiapine-related
		toxicity. Increased concentrations of
		quetiapine may lead to coma (see

Module 1

		section 4.3).
Risperidone	Not studied. Darunavir is expected to	A dose decrease may be needed for
Thioridazine	increase these antipsychotic plasma	these drugs when co-administered
Lurasidone	concentrations.	with Darunavir co-administered with
Pimozide	(CYP3A, CYP2D6 inhibition and/or P-	low dose ritonavir.
Sertindole	gp)	Concominant administration of
		Darunavir with low dose ritonavir and
		lurasidone, pimozide or sertindole is
		contraindicated (see section 4.3).
β-BLOCKERS		
Carvedilol	Not Studied. Darunavir is expected to	Clinical monitoring is recommended
Metoprolol	increase these β-blocker plasma	when co-administering Darunavir
Timolol	concentrations.	with β-blockers. A lower dose of the
	(CYP2D6 inhibition)	β-blocker should be considered.
CALCIUM CHANNE	EL BLOCKERS	
Amlodipine	Not studied. Darunavir co-administered	Clinical monitoring of therapeutic and
Diltiazem	with low dose ritonavir can be expected	adverse effects is recommended when
Felodipine	to increase the plasma concentrations of	these medicines are concomitantly
Nicardipine	calcium channel blockers.	administered with Darunavir with low
Nifedipine	(CYP3A and/or CYP2D6 inhibition)	dose ritonavir.
Verapamil		
CORTICOSTEROIDS		
Corticosteroids	Fluticasone: in a clinical study where	Concomitant use of Darunavir with
primarily	ritonavir 100 mg capsules twice daily	low dose ritonavir and corticosteroids
metabolised by	were co-administered with 50 μg	that are metabolised by CYP3A (e.g.
CYP3A (including	intranasal fluticasone propionate (4	fluticasone propionate or other
betamethasone,	times daily) for 7 days in healthy	inhaled or nasal corticosteroids) may
budesonide,	subjects, fluticasone propionate plasma	increase the risk of development of

Module 1

fluticasone,	concentrations increased significantly, systemic corticosteroid effects,	
mometasone,	whereas the intrinsic cortisol levels including Cushing's syndrome and	
prednisone,	decreased by approximately 86% (90% adrenal suppression.	
triamcinolone)	CI 82-89%). Greater effects may be Co-administration with CYP3A-	
,	expected when fluticasone is inhaled. metabolised corticosteroids is not	
	Systemic corticosteroid effects including recommended unless the potential	
	Cushing's syndrome and adrenal benefit to the patient outweighs the	
	suppression have been reported in risk, in which case patients should be	
	patients receiving ritonavir and inhaled monitored for systemic corticosteroid	
	or intranasally administered fluticasone. effects.	
	The effects of high fluticasone systemic Alternative corticosteroids which are	
	exposure on ritonavir plasma levels are less dependent on CYP3A	
	unknown. metabolism e.g. beclomethasone for	
	Other corticosteroids: interaction not intranasal or inhalational use sho	
	studied. Plasma concentrations of these be considered, particularly for los	
	medicinal products may be increased term use.	
	when co-administered with Darunavir	
	with low dose ritonavir, resulting in	
	reduced serum cortisol concentrations.	
Dexamethasone	Not studied. Dexamethasone may Systemic dexamethasone should be	
(systemic)	decrease plasma concentrations of used with caution when combined	
	darunavir. with Darunavir co-administered with	
	(CYP3A induction) low dose ritonavir.	
ENDOTHELIN RE	ENDOTHELIN RECEPTOR ANTAGONISTS	
Bosentan	Not studied. Concomitant use of When administered concomitantly	
	bosentan and darunavir co-administered with Darunavir and low dose	
	with low dose ritonavir may increase ritonavir, the patient's tolerability of	
	plasma concentrations of bosentan. bosentan should be monitored.	

Module 1

HEPATITIS C VIRUS (HCV) DIRECT-ACTING ANTIVIRALS		
NS3-4A protease inhibitors		
Elbasvir/grazoprevir	Darunavir with low dose ritonavir may Concomitant use of Darunavir with	
	increase the exposure to grazoprevir.	low dose ritonavir and
	(CYP3A and OATP1B inhibition)	elbasvir/grazoprevir is
		contraindicated (see section 4.3).
Telaprevir	telaprevir AUC ↓ 35%	It is not recommended to co-
750 mg every 8 hours	telaprevir Cmin ↓ 32%	administer Darunavir with low dose
	telaprevir Cmax ↓ 36%	ritonavir and telaprevir
	darunavir AUC12↓40%	
	darunavir Cmin↓42%	
	darunavir Cmax ↓ 40%	
Boceprevir	boceprevir AUC ↓ 32%	It is not recommended to co-
800 mg three times	boceprevir Cmin ↓ 35%	administer Darunavir with low dose
daily	boceprevir Cmax ↓ 25%	ritonavir and boceprevir.
	darunavir AUC ↓ 44%	
	darunavir Cmin↓59%	
	darunavir Cmax ↓ 36%	
Simeprevir	simeprevir AUC ↑ 159%	It is not recommended to co-
	simeprevir Cmin ↑ 358%	administer Darunavir with low dose
	simeprevir Cmax ↑ 79%	ritonavir and simeprevir.
	darunavir AUC ↑ 18%	
	darunavir Cmin ↑ 31%	
	darunavir Cmax ↔	
	The dose of simeprevir in this	
	interaction study was 50 mg when co-	
	administered in combination with	
	darunavir/ritonavir, compared to 150 mg	

Module 1

	in the simeprevir alone treatment group.	
HERBAL PRODUC	TTS	
St John's wo	rt Not studied. St John's wort is expected	Darunavir co-administered with low
(Hypericum	to decrease the plasma concentrations of	dose ritonavir must not be used
perforatum)	darunavir and ritonavir.	concomitantly with products
	(CYP450 induction)	containing St John's wort (Hypericum
		perforatum) (see section 4.3). If a
		patient is already taking St John's
		wort, stop St John's wort and if
		possible check viral levels. Darunavir
		exposure (and also ritonavir
		exposure) may increase on stopping
		St John's wort. The inducing effect
		may persist for at least 2 weeks after
		cessation of treatment with St John's
		wort.
HMG CO-A REDU	CTASE INHIBITORS	
Lovastatin	Not studied. Lovastatin and simvastatin	Increased plasma concentrations of
Simvastatin	are expected to have markedly increased	lovastatin or simvastatin may cause
	plasma concentrations when co-	myopathy, including rhabdomyolysis.
	administered with darunavir co-	Concomitant use of Darunavir co-
	administered with low dose ritonavir.	administered with low dose ritonavir
	(CYP3A inhibition)	with lovastatin and simvastatin is
		therefore contraindicated (see section
		4.3).
Atorvastatin	atorvastatin AUC ↑ 3-4 fold	When administration of atorvastatin
10 mg once daily	atorvastatin Cmin ↑ ≈5.5-10 fold	and Darunavir co-administered with
	atorvastatin Cmax ↑≈2 fold	low dose ritonavir is desired, it is
<u> </u>		

Module 1

	#darunavir	recommended to start with an
		atorvastatin dose of 10 mg once daily.
		A gradual dose increase of
		atorvastatin may be tailored to the
		clinical response.
Pravastatin	pravastatin AUC ↑ 81%¶	When administration of pravastatin
40 mg single dose	pravastatin Cmin ND	and Darunavir co-administered with
	pravastatin Cmax ↑ 63%	low dose ritonavir is required, it is
	¶ an up to five-fold increase was seen in	recommended to start with the lowest
	a limited subset of subjects	possible dose of pravastatin and
		titrate up to the desired clinical effect
		while monitoring for safety.
Rosuvastatin	rosuvastatin AUC ↑ 48%	When administration of rosuvastatin
10 mg once daily	rosuvastatin Cmax ↑ 144%	and Darunavir co-administered with
	based on published data	low dose ritonavir is required, it is
		recommended to start with the lowest
		possible dose of rosuvastatin and
		titrate up to the desired clinical effect
		while monitoring for safety.
H2-RECEPTOR AN	TAGONISTS	
Ranitidine	#darunavir AUC ↔	Darunavir co-administered with low
150 mg twice daily	#darunavir Cmin ↔	dose ritonavir can be co-administered
	#darunavir Cmax ↔	with H2-receptor antagonists without
		dose adjustments.
IMMUNOSUPPRESSANTS		
Ciclosporin	Not studied. Exposure to these	Therapeutic drug monitoring of the
Sirolimus	immunosuppressants will be increased	immunosuppressive agent must be
INHALED BETA A	GONISTS	

Module 1

Salmeterol	Not studied. Concomitant use of	Concomitant use of salmeterol and
	salmeterol and darunavir co-	Darunavir co-administered with low
	administered with low dose ritonavir	dose ritonavir is not recommended.
	may increase plasma concentrations of	The combination may result in
	salmeterol.	increased risk of cardiovascular
		adverse event with salmeterol,
		including QT prolongation,
		palpitations and sinus tachycardia.
NARCOTIC ANALG	ESICS / TREATMENT OF OPIOID DEF	PENDENCE
Methadone	R(-) methadone AUC ↓ 16%	No adjustment of methadone dosage
individual dose	R(-) methadone Cmin ↓ 15%	is required when initiating co-
ranging from 55 mg	R(-) methadone Cmax ↓ 24%	administration with
to 150 mg once daily		Darunavir/ritonavir. However,
		increased methadone dose may be
		necessary when concomitantly
		administered for a longer period of
		time due to induction of metabolism
		by ritonavir. Therefore, clinical
		monitoring is recommended, as
		maintenance therapy may need to be
		adjusted in some patients.
Buprenorphine/nalox	buprenorphine AUC ↓ 11%	The clinical relevance of the increase
one	buprenorphine Cmin ↔	in norbuprenorphine pharmacokinetic
8/2 mg-16/4 mg	buprenorphine Cmax ↓ 8%	parameters has not been established.
once daily	norbuprenorphine AUC ↑ 46%	Dose adjustment for buprenorphine
	norbuprenorphine Cmin ↑ 71%	may not be necessary when co-
	norbuprenorphine Cmax ↑ 36%	administered with Darunavir
	naloxone AUC ↔	/ritonavir but a careful clinical
	naloxone Cmin ND	monitoring for signs of opiate toxicity

Module 1

	naloxone Cmax ↔	is recommended.	
OESTROGEN-BASE	OESTROGEN-BASED CONTRACEPTIVES		
Ethinylestradiol	ethinylestradiol AUC ↓ 44%	Alternative or additional	
Norethindrone	ethinylestradiol Cmin ↓ 62%	contraceptive measures are	
$35 \mu g/1 mg once$	ethinylestradiol Cmax ↓ 32%	recommended when oestrogen-based	
daily	norethindrone AUC ↓ 14%	contraceptives are co-administered	
	norethindrone Cmin ↓ 30%	with Darunavir and low dose	
	norethindrone Cmax ↔	ritonavir. Patients using oestrogens as	
		hormone replacement therapy should	
		be clinically monitored for signs of	
		oestrogen deficiency.	
PHOSPHODIESTERA	ASE, TYPE 5 (PDE-5) INHIBITORS		
For the treatment of	In an interaction study #, a comparable	The combination of avanafil and	
erectile dysfunction	systemic exposure to sildenafil was	Darunavir with low dose ritonavir is	
For the treatment of	Not studied. Concomitant use of	A safe and effective dose of sildenafil	
pulmonary arterial	sildenafil or tadalafil for the treatment of	for the treatment of pulmonary	
hypertension	pulmonary arterial hypertension and	arterial hypertension co-administered	
Sildenafil	darunavir co-administered with low dose	with Darunavir and low dose ritonavir	
PROTON PUMP INHIBITORS			
Omeprazole	#darunavir AUC ↔	Darunavir co-administered with low	
20 mg once daily	#darunavir Cmin ↔	dose ritonavir can be co-administered	
	#darunavir Cmax ↔	with proton pump inhibitors without	
		dose adjustments.	
SEDATIVES/HYPNO	OTICS	<u>l</u>	

Buspirone	Not studied. Sedative/hypnotics are	Clinical monitoring is recommended
Clorazepate	extensively metabolised by CYP3A. Co-	when co-administering Darunavir
Diazepam	administration with Darunavir /ritonavir	with these sedatives/hypnotics and a
Estazolam	may cause a large increase in the	lower dose of the sedatives/hypnotics
Flurazepam	concentration of these medicines.	should be considered. Darunavir co-
Triazolam		administered with low dose ritonavir
Zoldipem	Based on data for other CYP3A	is contraindicated with triazolam.
Midazolam	inhibitors, plasma concentrations of	
	midazolam are expected to be	
	significantly higher when midazolam is	Darunavir co-administered with low
	given orally with Darunavir co-	dose ritonavir is contraindicated with
	administered with low dose ritonavir.	orally administered midazolam (see
	If parenteral midazolam is co-	section 4.3); whereas, caution should
	administered with Darunavir co-	be used with co-administration of
	administered with low dose ritonavir it	Darunavir with low dose ritonavir and
	may cause a large increase in the	parenteral midazolam.
	concentration of this benzodiazepine.	If parenteral midazolam is co-
	Data from concomitant use of parenteral	administered with Darunavir with a
	midazolam with other protease	low dose ritonavir, it should be done
	inhibitors suggest a possible 3-4 fold	in an intensive care unit (ICU) or
	increase in midazolam plasma levels.	similar setting, which ensures close
		clinical monitoring and appropriate
		medical management in case of
		respiratory depression and/or
		prolonged sedation. Dose adjustment
		for midazolam should be considered,
		especially if more than a single dose
		of midazolam is administered.

[†] The efficacy and safety of the use of Darunavir with 100 mg ritonavir and any other HIV PI (e.g.

Module 1

(fos)amprenavir, nelfinavir and tipranavir) has not been established in HIV patients. According to current treatment guidelines, dual therapy with protease inhibitors is generally not recommended.

4.6 Fertility, pregnancy and lactation

Pregnancy

As a general rule, when deciding to use antiretroviral agents for the treatment of HIV infection in pregnant women and consequently for reducing the risk of HIV vertical transmission to the newborn, the animal data as well as the clinical experience in pregnant women should be taken into account.

There are no adequate and well controlled studies on pregnancy outcome with darunavir in pregnant women. Studies in animals do not indicate direct harmful effects with respect to pregnancy, embryonal/foetal development, parturition or postnatal development (see section 5.3).

Darunavir co-administered with low dose ritonavir should be used during pregnancy only if the potential benefit justifies the potential risk.

Breast-feeding

It is not known whether darunavir is excreted in human milk. Studies in rats have demonstrated that darunavir is excreted in milk and at high levels (1,000 mg/kg/day) resulted in toxicity. Because of both the potential for HIV transmission and the potential for adverse reactions in breast-fed infants, mothers should be instructed not to breast-feed under any circumstances if they are receiving Darunavir.

Fertility

No human data on the effect of darunavir on fertility are available. There was no effect on mating or fertility with darunavir treatment in rats (see section 5.3).

4.7 Effects on ability to drive and use machines

Darunavir in combination with ritonavir has no or negligible influence on the ability to drive and use machines. However, dizziness has been reported in some patients during treatment with regimens containing Darunavir co-administered with low dose ritonavir and should be borne in mind when considering a patient's ability to drive or operate machinery (see section 4.8).

4.8 Undesirable effects

Summary of the safety profile

During the clinical development program (N=2,613 treatment-experienced subjects who initiated therapy with Darunavir/ritonavir 600/100 mg twice daily), 51.3% of subjects experienced at least one adverse reaction. The total mean treatment duration for subjects was 95.3 weeks. The most frequent adverse reactions reported in clinical trials and as spontaneous reports are diarrhoea, nausea, rash, headache and vomiting. The most frequent serious reactions are acute renal failure, myocardial infarction, immune reconstitution inflammatory syndrome, thrombocytopenia, osteonecrosis, diarrhoea, hepatitis and pyrexia.

In the 96 week analysis, the safety profile of Darunavir /ritonavir 800/100 mg once daily in treatment-naïve subjects was similar to that seen with Darunavir /ritonavir 600/100 mg twice daily in treatment-experienced subjects except for nausea which was observed more frequently in treatment-naïve subjects. This was driven by mild intensity nausea. No new safety findings were identified in the 192 week analysis of the treatment-naïve subjects in which the mean treatment duration of Darunavir /ritonavir 800/100 mg once daily was 162.5 weeks.

Tabulated list of adverse reactions

Adverse reactions are listed by system organ class (SOC) and frequency category. Within each frequency category, adverse reactions are presented in order of decreasing seriousness. Frequency categories are defined as follows: very common ($\geq 1/10$), common ($\geq 1/100$ to < 1/10), uncommon ($\geq 1/1,000$ to < 1/100), rare ($\geq 1/10,000$ to < 1/1,000) and not known (frequency cannot be estimated from the available data).

Adverse reactions in clinical trials and post-marketing

Adverse reactions in chinical trials and	post-marketing
MedDRA system organ class	Adverse reaction
Frequency category	
Infections and infestations	
uncommon	herpes simplex
Blood and lymphatic system disorders	
uncommon	thrombocytopenia, neutropenia, anaemia, leukopenia

Module 1

rare	increased eosinophil count
Immune system disorders	•
uncommon	immune reconstitution inflammatory syndrome, (drug)
	hypersensitivity
Endocrine disorders	·
uncommon	hypothyroidism, increased blood thyroid stimulating
	hormone
Metabolism and nutrition di	sorders
common	diabetes mellitus, hypertriglyceridaemia,
	hypercholesterolaemia, hyperlipidaemia
uncommon	gout, anorexia, decreased appetite, decreased weight,
	increased weight, hyperglycaemia, insulin resistance,
	decreased high density lipoprotein, increased appetite,
	polydipsia, increased blood lactate dehydrogenase
Psychiatric disorders	
common	insomnia
uncommon	depression, disorientation, anxiety, sleep disorder,
	abnormal dreams. nightmare. decreased libido
rare	confusional state, altered mood, restlessness
Nervous system disorders	•
common	headache, peripheral neuropathy, dizziness
uncommon	lethargy, paraesthesia, hypoaesthesia, dysgeusia,
	disturbance in attention, memory impairment, somnolence
rare	syncope, convulsion, ageusia, sleep phase rhythm
	disturbance
Eve disorders	
uncommon	conjunctival hyperaemia, dry eye
rare	visual disturbance
Ear and labyrinth disorders	•

Module 1

uncommon	vertigo	
Cardiac disorders		
uncommon	myocardial infarction, angina pectoris, prolonged	
	electrocardiogram QT, tachycardia	
rare	acute myocardial infarction, sinus bradycardia,	
	palpitations	
Vascular disorders		
uncommon	hypertension, flushing	
Respiratory, thoracic and mediastinal	disorders	
uncommon	dyspnoea, cough, epistaxis, throat irritation	
rare	rhinorrhoea	
Gastrointestinal disorders		
very common	diarrhoea	
common	vomiting, nausea, abdominal pain, increased blood	
	amylase, dyspepsia, abdominal distension, flatulence	
uncommon pancreatitis, gastritis, gastrooesophageal reflux		
	aphthous stomatitis, retching, dry mouth, abdominal	
	discomfort, constipation, increased lipase, eructation, oral	
	dysaesthesia	
rare	stomatitis, haematemesis, cheilitis, dry lip, coated tongue	
Hepatobiliary disorders		
common	increased alanine aminotransferase	
uncommon	hepatitis, cytolytic hepatitis, hepatic steatosis,	
	hepatomegaly, increased transaminase, increased	
	aspartate aminotransferase, increased blood bilirubin,	
	increased blood alkaline phosphatase, increased gamma-	
	glutamyltransferase	

Module 1

Skin and subcutaneous tissue disorders	
common	rash (including macular, maculopapular, papular,
	erythematous and pruritic rash), pruritus
uncommon	angioedema, generalised rash, allergic dermatitis,
	urticaria, eczema, erythema, hyperhidrosis, night sweats,
	alopecia, acne, dry skin, nail pigmentation
rare	DRESS, Stevens-Johnson syndrome, erythema
	multiforme, dermatitis, seborrhoeic dermatitis, skin
	lesion, xeroderma
not known	toxic epidermal necrolysis, acute generalised
	exanthematous pustulosis
Musculoskeletal and connective tissue a	lisorders
uncommon	myalgia, osteonecrosis, muscle spasms, muscular
	weakness, arthralgia, pain in extremity, osteoporosis,
	increased blood creatine phosphokinase
rare	musculoskeletal stiffness, arthritis, joint stiffness

Renal and urinary disord	ers
uncommon	acute renal failure, renal failure, nephrolithiasis, increased blood creatinine, proteinuria, bilirubinuria, dysuria, nocturia, pollakiuria
rare	decreased creatinine renal clearance
Reproductive system and	breast disorders
uncommon	erectile dysfunction, gynaecomastia
General disorders and ad	ministration site conditions
common	asthenia, fatigue
uncommon	pyrexia, chest pain, peripheral oedema, malaise, feeling hot, irritability, pain
rare	chills, abnormal feeling, xerosis

Description of selected adverse reactions

Rash

In clinical trials, rash was mostly mild to moderate, often occurring within the first four weeks of treatment and resolving with continued dosing. In cases of severe skin reaction see the warning in section 4.4.

During the clinical development program of raltegravir in treatment-experienced patients, rash, irrespective of causality, was more commonly observed with regimens containing Darunavir + raltegravir compared to those containing Darunavir without raltegravir or raltegravir without Darunavir. Rash considered by the investigator to be drug-related occurred at similar rates. The exposure-adjusted rates of rash (all causality) were 10.9, 4.2, and 3.8 per 100 patient-years (PYR), respectively; and for drug-related rash were 2.4, 1.1, and 2.3 per 100 PYR, respectively. The rashes observed in clinical studies were mild to moderate in severity and did not result in discontinuation of therapy (see section 4.4).

Metabolic parameters

Weight and levels of blood lipids and glucose may increase during antiretroviral therapy (see section 4.4).

Musculoskeletal abnormalities

Increased CPK, myalgia, myositis and rarely, rhabdomyolysis have been reported with the use of protease inhibitors, particularly in combination with NRTIs.

Cases of osteonecrosis have been reported, particularly in patients with generally acknowledged risk factors, advanced HIV disease or long-term exposure to combination antiretroviral therapy (CART). The frequency of this is unknown (see section 4.4).

Immune reconstitution inflammatory syndrome

In HIV infected patients with severe immune deficiency at the time of initiation of combination antiretroviral therapy (CART), an inflammatory reaction to asymptomatic or residual opportunistic infections may arise. Autoimmune disorders (such as Graves' disease) have also been reported; however, the reported time to onset is more variable and these events can occur many months after initiation of treatment (see section 4.4).

Module 1

Bleeding in haemophiliac patients

There have been reports of increased spontaneous bleeding in haemophiliac patients receiving antiretroviral protease inhibitors (see section 4.4).

Paediatric population

The safety assessment in paediatric patients is based on the 48-week analysis of safety data from three Phase II trials. The following patient populations were evaluated (see section 5.1):

- 80 ART-experienced HIV-1 infected paediatric patients aged from 6 to 17 years and weighing at least 20 kg who received Darunavir tablets with low dose ritonavir twice daily in combination with other antiretroviral agents.
- 21 ART-experienced HIV-1 infected paediatric patients aged from 3 to < 6 years and weighing 10 kg to < 20 kg (16 participants from 15 kg to < 20 kg) who received Darunavir oral suspension with low dose ritonavir twice daily in combination with other antiretroviral agents.
- 12 ART-naïve HIV-1 infected paediatric patients aged from 12 to 17 years and weighing at least 40 kg who received Darunavir tablets with low dose ritonavir once daily in combination with other antiretroviral agents (see section 5.1).

Overall, the safety profile in these paediatric patients was similar to that observed in the adult population.

Other special populations

Patients co-infected with hepatitis B and/or hepatitis C virus

Among 1,968 treatment-experienced patients receiving Darunavir co-administered with ritonavir 600/100 mg twice daily, 236 patients were co-infected with hepatitis B or C. Co-infected patients were more likely to have baseline and treatment emergent hepatic transaminase elevations than those without chronic viral hepatitis (see section 4.4).

Reporting of suspected adverse reactions

Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via:

Module 1

4.9 Overdose

Human experience of acute overdose with Darunavir co-administered with low dose ritonavir is limited. Single doses up to 3,200 mg of darunavir as oral solution alone and up to 1,600 mg of the tablet formulation of darunavir in combination with ritonavir have been administered to healthy volunteers without untoward symptomatic effects.

There is no specific antidote for overdose with Darunavir. Treatment of overdose with Darunavir consists of general supportive measures including monitoring of vital signs and observation of the clinical status of the patient. If indicated, elimination of unabsorbed active substance is to be achieved by emesis.

Administration of activated charcoal may also be used to aid in removal of unabsorbed active substance. Since darunavir is highly protein bound, dialysis is unlikely to be beneficial in significant removal of the active substance.

5. PHARMACOLOGICAL PROPERTIES

5.1 Pharmacodynamic properties

Pharmacotherapeutic group: Antivirals for systemic use, protease inhibitors.

ATC code: J05AE10

Mechanism of action

Darunavir is an inhibitor of the dimerisation and of the catalytic activity of the HIV-1 protease (K_D of 4.5 x 10⁻¹²M). It selectively inhibits the cleavage of HIV encoded Gag-Pol polyproteins in virus infected cells, thereby preventing the formation of mature infectious virus particles.

Antiviral activity in vitro

Darunavir exhibits activity against laboratory strains and clinical isolates of HIV-1 and laboratory strains of HIV-2 in acutely infected T-cell lines, human peripheral blood mononuclear cells and human monocytes/macrophages with median EC₅₀ values ranging from 1.2 to 8.5 nM (0.7 to 5.0 ng/ml). Darunavir demonstrates antiviral activity in vitro against a broad panel of HIV-1 group M (A, B, C, D, E, F, G) and group O primary isolates with EC_{50} values ranging from < 0.1 to 4.3 nM. These EC₅₀ values are well below the 50% cellular toxicity concentration range of 87 μ M to > 100 μM.

Module 1

Resistance

In vitro selection of darunavir-resistant virus from wild type HIV-1 was lengthy (> 3 years). The selected viruses were unable to grow in the presence of darunavir concentrations above 400 nM. Viruses selected in these conditions and showing decreased susceptibility to darunavir (range: 23-50-fold) harboured 2 to 4 amino acid substitutions in the protease gene. The decreased susceptibility to darunavir of the emerging viruses in the selection experiment could not be explained by the emergence of these protease mutations.

The clinical trial data from ART-experienced patients (*TITAN* trial and the pooled analysis of the *POWER* 1, 2 and 3 and *DUET* 1 and 2 trials) showed that virologic response to DARUNAVIR coadministered with low dose ritonavir was decreased when 3 or more darunavir RAMs (V11I, V32I, L33F, I47V, I50V, I54L or M, T74P, L76V, I84V and L89V) were present at baseline or when these mutations developed during treatment.

Increasing baseline darunavir fold change in EC₅₀ (FC) was associated with decreasing virologic response. A lower and upper clinical cut-off of 10 and 40 were identified. Isolates with baseline FC \leq 10 are susceptible; isolates with FC > 10 to 40 have decreased susceptibility; isolates with FC > 40 are resistant (see Clinical results).

Viruses isolated from patients on Darunavir/ritonavir 600/100 mg twice daily experiencing virologic failure by rebound that were susceptible to tipranavir at baseline remained susceptible to tipranavir after treatment in the vast majority of cases.

The lowest rates of developing resistant HIV virus are observed in ART-naïve patients who are treated for the first time with darunavir in combination with other ART.

The table below shows the development of mutations and loss of susceptibility to PIs in virologic failures at endpoint in the *ARTEMIS*, *ODIN* and *TITAN* trials.

	ARTEMIS	OD	TITAN	
	DARUNAVIR/	DARUNAVIR/	DARUNAVIR/	DARUNAVIR/
	ritonavir	ritonavir	ritonavir	ritonavir
	800/100 mg	800/100 mg	600/100 mg	600/100 mg
	once daily	once daily	twice daily	twice daily
	N=343	N=294	N=296	N=298
Total number of	55 (16.0%)	65 (22.1%)	54 (18.2%)	31 (10.4%)
virologic failures ^a , n (%)				
Rebounders	39 (11.4%)	11 (3.7%)	11 (3.7%)	16 (5.4%)
Never suppressed	16 (4.7%)	54 (18.4%)	43 (14.5%)	15 (5.0%)
subjects				
at endpoint, n/N Primary (major) PI	0/43	1/60	0/42	6/28
mutations				
PI RAMs	4/43	7/60	4/42	10/28
Number of subjects with susceptibility to PIs at end	_		point phenotypes, sh	owing loss of
PI				
darunavir	0/39	1/58	0/41	3/26
amprenavir	0/39	1/58	0/40	0/22
atazanavir	0/39	2/56	0/40	0/22
indinavir	0/39	2/57	0/40	1/24
lopinavir	0/39	1/58	0/40	0/23
saquinavir	0/39	0/56	0/40	0/22
				0/22

Module 1

^a TLOVR non-VF censored algorithm based on HIV-1 RNA < 50 copies/ml, except for *TITAN* (HIV-1 RNA < 400 copies/ml)

Cross-resistance

Darunavir FC was less than 10 for 90% of 3,309 clinical isolates resistant to amprenavir, atazanavir, indinavir, lopinavir, nelfinavir, ritonavir, saquinavir and/or tipranavir showing that viruses resistant to most PIs remain susceptible to darunavir.

In the virologic failures of the ARTEMIS trial no cross-resistance with other PIs was observed.

Clinical results

Adult patients

For clinical trial results in ART-naïve adult patients, refer to the Summary of Product Characteristics for DARUNAVIR 400 mg and 800 mg tablets or 100 mg/ml oral suspension.

Efficacy of DARUNAVIR 600 mg twice daily co-administered with 100 mg ritonavir twice daily in ART-experienced patients

The evidence of efficacy of Darunavir co-administered with ritonavir (600/100 mg twice daily) in ART-experienced patients is based on the 96 weeks analysis of the Phase III trial *TITAN* in ART-experienced lopinavir naïve patients, on the 48 week analysis of the Phase III trial *ODIN* in ART-experienced patients with no DRV-RAMs, and on the analyses of 96 weeks data from the Phase IIb trials *POWER* 1 and 2 in ART-experienced patients with high level of PI resistance.

TITAN is a randomised, controlled, open-label Phase III trial comparing Darunavir co-administered with ritonavir (600/100 mg twice daily) versus lopinavir/ritonavir (400/100 mg twice daily) in ART-experienced, lopinavir naïve HIV-1 infected adult patients. Both arms used an Optimised Background Regimen (OBR) consisting of at least 2 antiretrovirals (NRTIs with or without NNRTIs).

The table below shows the efficacy data of the 48 week analysis from the *TITAN* trial.

TITAN						
Outcomes	DARUNAVIR/ritonavir 600/100 mg twice daily + OBR N=298	1	Treatment difference (95% CI of difference)			

^b IAS-USA lists

HIV-1 RNA < 50 copies/ml ^a	70.8% (211)	60.3% (179)	10.5% (2.9; 18.1) ^b
median CD4+ cell count change from baseline (x 10 ⁶ /l) ^c	88	81	

^a Imputations according to the TLOVR algorithm

At 48 weeks non-inferiority in virologic response to the Darunavir/ritonavir treatment, defined as the percentage of patients with plasma HIV-1 RNA level < 400 and < 50 copies/ml, was demonstrated (at the pre-defined 12% non-inferiority margin) for both ITT and OP populations. These results were confirmed in the analysis of data at 96 weeks of treatment in the *TITAN* trial, with 60.4% of patients in the Darunavir/ritonavir arm having HIV-1 RNA < 50 copies/ml at week 96 compared to 55.2% in the lopinavir/ritonavir arm [difference: 5.2%, 95% CI (-2.8; 13.1)].

ODIN is a Phase III, randomised, open-label trial comparing Darunavir/ritonavir 800/100 mg once daily versus Darunavir/ritonavir 600/100 mg twice daily in ART-experienced HIV-1 infected patients with screening genotype resistance testing showing no darunavir RAMs (i.e. V11I, V32I, L33F, I47V, I50V, I54M, I54L, T74P, L76V, I84V, L89V) and a screening HIV-1 RNA > 1,000 copies/ml. Efficacy analysis is based on 48 weeks of treatment (see table below). Both arms used an optimised background regimen (OBR) of \geq 2 NRTIs.

	ODIN						
Outcomes	DARUNAVIR/ritonavir	DARUNAVIR/ritonavir	Treatment difference				
	800/100 mg once daily	600/100 mg twice daily +	(95% CI of difference)				
	+ OBR	OBR					
	N=294	N=296					
HIV-1 RNA < 50 copies/ml ^a	72.1% (212)	70.9% (210)	1.2% (-6.1; 8.5) ^b				
With Baseline HIV-1 RNA (copies/ml)	77.6% (198/255)	73.2% (194/265)	4.4% (-3.0; 11.9)				

^b Based on a normal approximation of the difference in % response

c NC=F

< 100,000	35.9% (14/39)	51.6% (16/31)	-15.7% (-39.2; 7.7)
≥ 100,000			
With Baseline CD4+			
cell count (x 10 ⁶ /l)	75.1% (184/245)	72.5% (187/258)	2.6% (-5.1; 10.3)
≥ 100	57.1% (28/49)	60.5% (23/38)	-3.4% (-24.5; 17.8)
< 100			
With HIV-1 clade			
Type B	70.4% (126/179)	64.3% (128/199)	6.1% (-3.4; 15.6)
Type AE	90.5% (38/42)	91.2% (31/34)	-0.7% (-14.0; 12.6)
Type C	72.7% (32/44)	78.8% (26/33)	-6.1% (-2.6; 13.7)
Other ^c	55.2% (16/29)	83.3% (25/30)	-28.2% (-51.0; -5.3)
mean CD4+ cell count	108	112	-5 ^d (-25; 16)
change from baseline			
$(x 10^6/l)^e$			

^a Imputations according to the TLOVR algorithm

At 48 weeks, virologic response, defined as the percentage of patients with plasma HIV-1 RNA level < 50 copies/ml, with Darunavir/ritonavir 800/100 mg once daily treatment was demonstrated to be non-inferior (at the pre-defined 12% non-inferiority margin) compared to Darunavir/ritonavir 600/100 mg twice daily for both ITT and OP populations.

Darunavir/ritonavir 800/100 mg once daily in ART-experienced patients should not be used in patients with one or more darunavir resistance associated mutations (DRV-RAMs) or HIV-1 RNA \geq 100,000 copies/ml or CD4+ cell count < 100 cells x 10^6 /l (see section 4.2 and 4.4). Limited data is available in patients with HIV-1 clades other than B.

^b Based on a normal approximation of the difference in % response

^c Clades A1, D, F1, G, K, CRF02_AG, CRF12_BF, and CRF06_CPX

^d Difference in means

^e Last Observation Carried Forward imputation

POWER 1 and **POWER 2** are randomised, controlled trials comparing Darunavir co-administered with ritonavir (600/100 mg twice daily) with a control group receiving an investigator-selected PI(s) regimen in HIV-1 infected patients who had previously failed more than 1 PI containing regimen. An OBR consisting of at least 2 NRTIs with or without enfuvirtide (ENF) was used in both trials.

The table below shows the efficacy data of the 48-week and 96-week analyses from the pooled *POWER* 1 and *POWER* 2 trials.

POWER 1 and POWER 2 pooled data						
		Week 48		Week 96		
Outcomes	DARUNAVIR/	Control	Treatment	DARUNAVIR/	Control	Treatment
	ritonavir	n=124	difference	ritonavir	n=124	difference
	600/100 mg			600/100 mg		
	twice daily			twice daily		
	n=131			n=131		
HIV RNA < 50	45.0%	11.3%	33.7%	38.9%	8.9%	30.1%
copies/ml ^a	(59)	(14)	(23.4%; 44.1%) ^c	(51)	(11)	$(20.1; 40.0)^{c}$
CD4+ cell count	103	17	86	133	15	118
mean change from baseline (x 10 ⁶ /l) ^b			(57; 114) ^c			(83.9; 153.4) ^c

^a Imputations according to the TLOVR algorithm

Analyses of data through 96 weeks of treatment in the *POWER* trials demonstrated sustained antiretroviral efficacy and immunologic benefit.

Out of the 59 patients who responded with complete viral suppression (< 50 copies/ml) at week 48, 47 patients (80% of the responders at week 48) remained responders at week 96.

^b Last Observation Carried Forward imputation

^c 95% confidence intervals.

Module 1

Baseline genotype or phenotype and virologic outcome

Baseline genotype and darunavir FC (shift in susceptibility relative to reference) were shown to be a predictive factor of virologic outcome.

Proportion (%) of patients with response (HIV-1 RNA < 50 copies/ml at week 24) to Darunavir co-administered with ritonavir (600/100 mg twice daily) by baseline genotype^a, and baseline darunavir FC and by use of enfuvirtide (ENF): As treated analysis of the POWER and DUET trials.

	Numl	Baseline DRV FC ^b						
Response (HIV-1 RNA < 50 copies/ml at week 24) %, n/N	All ranges	0-2	3	≥4	All ranges	≤ 10	10-40	> 40
All patients	45% 455/1,014	54% 359/660	39% 67/172	12% 20/171	45% 455/1,014	55% 364/659	29% 59/203	8% 9/118
Patients with no/non-naïve use of ENF ^c	39% 290/741	50% 238/477	29% 35/120	7% 10/135	39% 290/741	51% 244/477		5% 5/94
Patients with naïve use of ENF ^d	60% 165/273	66% 121/183	62% 32/52	28% 10/36	60% 165/273	66% 120/182	61% 34/56	17% 4/24

^a Number of mutations from the list of mutations associated with a diminished response to Darunavir/ritonavir (V11I, V32I, L33F, I47V, I50V, I54L or M, T74P, L76V, I84V or L89V)

^b fold change in EC₅₀

^c "Patients with no/non-naïve use of ENF" are patients who did not use ENF or who used ENF but not for the first time

^d "Patients with naïve use of ENF" are patients who used ENF for the first time

Module 1

Paediatric patients

For clinical trial results in ART-naïve paediatric patients aged 12 to 17 years, refer to the Summary of Product Characteristics for Darunavir 400 mg and 800 mg tablets or Darunavir 100 mg/ml oral suspension.

ART-experienced paediatric patients from the age of 6 to < 18 years and weighing at least 20 kg

DELPHI is an open-label, Phase II trial evaluating the pharmacokinetics, safety, tolerability, and efficacy of Darunavir with low dose ritonavir in 80 ART-experienced HIV-1 infected paediatric patients aged 6 to 17 years and weighing at least 20 kg. These patients received Darunavir/ritonavir twice daily in combination with other antiretroviral agents (see section 4.2 for dosage recommendations per body weight). Virologic response was defined as a decrease in plasma HIV-1 RNA viral load of at least 1.0 log₁₀ versus baseline.

In the study, patients who were at risk of discontinuing therapy due to intolerance of ritonavir oral solution (e.g. taste aversion) were allowed to switch to the capsule formulation. Of the 44 patients taking ritonavir oral solution, 27 switched to the 100 mg capsule formulation and exceeded the weight-based ritonavir dose without changes in observed safety.

DELPHI				
Outcomes at week 48	DARUNAVIR/ritonavir N=80			
HIV-1 RNA < 50 copies/ml ^a	47.5% (38)			
CD4+ cell count mean change from baseline ^b	147			

^a Imputations according to the TLOVR algorithm.

According to the TLOVR non-virologic failure censored algorithm 24 (30.0%) patients experienced virological failure, of which 17 (21.3%) patients were rebounders and 7 (8.8%) patients were non-responders.

ART-experienced paediatric patients from the age of 3 to < 6 years

The pharmacokinetics, safety, tolerability and efficacy of Darunavir/ritonavir twice daily in combination with other antiretroviral agents in 21 ART-experienced HIV-1 infected paediatric

^b Non-completer is failure imputation: patients who discontinued prematurely are imputed with a change equal to 0.

Module 1

patients aged 3 to < 6 years and weighing 10 kg to < 20 kg was evaluated in an open-label, Phase II trial, *ARIEL*. Patients received a weight-based twice daily treatment regimen, patients weighing 10 kg to < 15 kg received darunavir/ritonavir 25/3 mg/kg twice daily, and patients weighing 15 kg to < 20 kg received darunavir/ritonavir 375/50 mg twice daily. At week 48, the virologic response, defined as the percentage of patients with confirmed plasma viral load < 50 HIV-1 RNA copies/ml, was evaluated in 16 paediatric patients 15 kg to < 20 kg and 5 paediatric patients 10 kg to < 15 kg receiving Darunavir/ritonavir in combination with other antiretroviral agents (see section 4.2 for dosage recommendations per body weight).

ARIEL							
Outcomes at week 48	DARUNAVIR/ritonavir						
	10 kg to < 15 kg N=5	15 kg to < 20 kg N=16					
HIV-1 RNA < 50 copies/ml ^a	80.0% (4)	81.3% (13)					
CD4+ percent change from baseline ^b	4	4					
CD4+ cell count mean change from baseline ^b	16	241					

^a Imputations according to the TLOVR algorithm.

Limited efficacy data are available in paediatric patients below 15 kg and no recommendation on a posology can be made.

Pregnancy and postpartum

Darunavir/ritonavir (600/100 mg twice daily or 800/100 mg once daily) in combination with a background regimen was evaluated in a clinical trial of 34 pregnant women (17 in each arm) during the second and third trimesters, and postpartum. Virologic response was preserved throughout the study period in both arms. No mother to child transmission occurred in the infants born to the 29 subjects who stayed on the antiretroviral treatment through delivery. There were no new clinically relevant safety findings compared with the known safety profile of darunavir/ritonavir in HIV-1 infected adults (see sections 4.2, 4.4 and 5.2).

5.2 Pharmacokinetic properties

The pharmacokinetic properties of darunavir, co-administered with ritonavir, have been evaluated in healthy adult volunteers and in HIV-1 infected patients. Exposure to darunavir was higher in HIV-1

b NC=F

infected patients than in healthy subjects. The increased exposure to darunavir in HIV-1 infected patients compared to healthy subjects may be explained by the higher concentrations of α_1 -acid glycoprotein (AAG) in HIV-1 infected patients, resulting in higher darunavir binding to plasma AAG and, therefore, higher plasma concentrations.

Darunavir is primarily metabolised by CYP3A. Ritonavir inhibits CYP3A, thereby increasing the plasma concentrations of darunavir considerably.

Absorption

Darunavir was rapidly absorbed following oral administration. Maximum plasma concentration of darunavir in the presence of low dose ritonavir is generally achieved within 2.5-4.0 hours.

The absolute oral bioavailability of a single 600 mg dose of darunavir alone was approximately 37% and increased to approximately 82% in the presence of 100 mg twice daily ritonavir. The overall pharmacokinetic enhancement effect by ritonavir was an approximate 14-fold increase in the systemic exposure of darunavir when a single dose of 600 mg darunavir was given orally in combination with ritonavir at 100 mg twice daily (see section 4.4).

When administered without food, the relative bioavailability of darunavir in the presence of low dose ritonavir is 30% lower as compared to intake with food. Therefore, Darunavir tablets should be taken with ritonavir and with food. The type of food does not affect exposure to darunavir.

Distribution

Darunavir is approximately 95% bound to plasma protein. Darunavir binds primarily to plasma α_1 -acid glycoprotein.

Following intravenous administration, the volume of distribution of darunavir alone was 88.1 ± 59.0 l (Mean \pm SD) and increased to 131 ± 49.9 l (Mean \pm SD) in the presence of 100 mg twice-daily ritonavir.

Biotransformation

In vitro experiments with human liver microsomes (HLMs) indicate that darunavir primarily undergoes oxidative metabolism. Darunavir is extensively metabolised by the hepatic CYP system and almost exclusively by isozyme CYP3A4. A ¹⁴C-darunavir trial in healthy volunteers showed that a majority of the radioactivity in plasma after a single 400/100 mg darunavir with ritonavir dose was

due to the parent active substance. At least 3 oxidative metabolites of darunavir have been identified in humans; all showed activity that was at least 10-fold less than the activity of darunavir against wild type HIV.

Elimination

After a 400/100 mg ¹⁴C-darunavir with ritonavir dose, approximately 79.5% and 13.9% of the administered dose of ¹⁴C-darunavir could be retrieved in faeces and urine, respectively. Unchanged darunavir accounted for approximately 41.2% and 7.7% of the administered dose in faeces and urine, respectively. The terminal elimination half-life of darunavir was approximately 15 hours when combined with ritonavir.

The intravenous clearance of darunavir alone (150 mg) and in the presence of low dose ritonavir was 32.8 l/h and 5.9 l/h, respectively.

Special populations

Paediatric population

The pharmacokinetics of darunavir in combination with ritonavir taken twice daily in 74 treatment-experienced paediatric patients, aged 6 to 17 years and weighing at least 20 kg, showed that the administered weight-based doses of Darunavir/ritonavir resulted in darunavir exposure comparable to that in adults receiving Darunavir/ritonavir 600/100 mg twice daily (see section 4.2).

The pharmacokinetics of darunavir in combination with ritonavir taken twice daily in 14 treatment-experienced paediatric patients, aged 3 to < 6 years and weighing at least 15 kg to < 20 kg, showed that weight-based dosages resulted in darunavir exposure that was comparable to that achieved in adults receiving Darunavir/ritonavir 600/100 mg twice daily (see section 4.2).

The pharmacokinetics of darunavir in combination with ritonavir taken once daily in 12 ART-naïve paediatric patients, aged 12 to < 18 years and weighing at least 40 kg, showed that Darunavir/ritonavir 800/100 mg once daily results in darunavir exposure that was comparable to that achieved in adults receiving Darunavir/ritonavir 800/100 mg once daily. Therefore the same once daily dosage may be used in treatment-experienced adolescents aged 12 to < 18 years and weighing at least 40 kg without darunavir resistance associated mutations (DRV-RAMs)* and who have plasma HIV-1 RNA < 100,000 copies/ml and CD4+ cell count ≥ 100 cells x 10^6 /l (see section 4.2).

* DRV-RAMs: V11I, V32I, L33F, I47V, I50V, I54M, I54L, T74P, L76V, I84V and L89V

Module 1

The pharmacokinetics of darunavir in combination with ritonavir taken once daily in 10 treatment-experienced paediatric patients, aged 3 to < 6 years and weighing at least 14 kg to < 20 kg, showed that weight-based dosages resulted in darunavir exposure that was comparable to that achieved in adults receiving Darunavir/ritonavir 800/100 mg once daily (see section 4.2). In addition, pharmacokinetic modeling and simulation of darunavir exposures in paediatric patients across the ages of 3 to < 18 years confirmed the darunavir exposures as observed in the clinical studies and allowed the identification of weight-based Darunavir/ritonavir once daily dosing regimens for paediatric patients weighing at least 15 kg that are either ART-naïve or treatment-experienced paediatric patients without DRV-RAMs* and who have plasma HIV-1 RNA < 100,000 copies/ml and CD4+ cell count ≥ 100 cells x $10^6/1$ (see section 4.2).

* DRV-RAMs: V11I, V32I, L33F, I47V, I50V, I54M, I54L, T74P, L76V, I84V and L89V *Elderly*

Population pharmacokinetic analysis in HIV infected patients showed that darunavir pharmacokinetics are not considerably different in the age range (18 to 75 years) evaluated in HIV infected patients (n=12, age \geq 65) (see section 4.4). However, only limited data were available in patients above the age of 65 year.

<u>Gender</u>

Population pharmacokinetic analysis showed a slightly higher darunavir exposure (16.8%) in HIV infected females compared to males. This difference is not clinically relevant.

Renal impairment

Results from a mass balance study with ¹⁴C-darunavir with ritonavir showed that approximately 7.7% of the administered dose of darunavir is excreted in the urine unchanged.

Although darunavir has not been studied in patients with renal impairment, population pharmacokinetic analysis showed that the pharmacokinetics of darunavir were not significantly affected in HIV infected patients with moderate renal impairment (CrCl between 30-60 ml/min, n=20) (see sections 4.2 and 4.4).

Hepatic impairment

Darunavir is primarily metabolised and eliminated by the liver. In a multiple dose study with Darunavir co-administered with ritonavir (600/100 mg) twice daily, it was demonstrated that the

Module 1

total plasma concentrations of darunavir in subjects with mild (Child-Pugh Class A, n=8) and moderate (Child-Pugh Class B, n=8) hepatic impairment were comparable with those in healthy subjects. However, unbound darunavir concentrations were approximately 55% (Child-Pugh Class A) and 100% (Child-Pugh Class B) higher, respectively. The clinical relevance of this increase is unknown therefore, Darunavir should be used with caution. The effect of severe hepatic impairment on the pharmacokinetics of darunavir has not been studied (see sections 4.2, 4.3 and 4.4).

Pregnancy and postpartum

The exposure to total darunavir and ritonavir after intake of darunavir/ritonavir 600/100 mg twice daily and darunavir/ritonavir 800/100 mg once daily as part of an antiretroviral regimen

was generally lower during pregnancy compared with postpartum. However, for unbound (i.e. active) darunavir, the pharmacokinetic parameters were less reduced during pregnancy compared to postpartum, due to an increase in the unbound fraction of darunavir during pregnancy compared to postpartum.

Pharmacokinetic results of total darunavir after administration of darunavir/ritonavir at 600/100 mg twice daily as part of an antiretroviral regimen, during the second trimester of pregnancy, the third trimester of pregnancy and postpartum								
Pharmacokinetics total darunavir (mean ± SD)		Second pregnand (n=11) ^a	trimester	of	Third pregnai (n=11)	trimester ncy	of	Postpartum (6-12 weeks) (n=11)
C _{max} , ng/ml		$4,601 \pm 1$,125		5,111 ±	1,517		$6,499 \pm 2,411$
AUC _{12h} , ng.h/ml		38,950 ±	10,010		43,700 =	± 16,400		$55,300 \pm 27,020$
C _{min} , ng/ml ^b		1.980 ± 8	39.9		2,498 ±	1,193		$2,711 \pm 2,268$

 $[\]overline{n} = 10$ for AUC_{12h}

 $^{^{}b}$ excluding C_{min} value below LLOQ, n=10 for reference

Module 1

Pharmacokinetic results of total darunavir after administration of darunavir/ritonavir at 800/100 mg once daily as part of an antiretroviral regimen, during the second trimester of pregnancy, the third trimester of pregnancy and postpartum

Pharmacokinetics of	Second trimester of	Third Trimester of	Postpartum (6-12
total darunavir	pregnancy	pregnancy	weeks)
$(mean \pm SD)$	(n=16)	(n=14)	(n=15)
C _{max} , ng/ml	$4,988 \pm 1,551$	$5,138 \pm 1,243$	$7,445 \pm 1,674$
AUC _{24h} , ng.h/ml	$61,303 \pm 16,232$	$60,439 \pm 14,052$	$94,529 \pm 28,572$
C _{min} , ng/ml ^a	$1,193 \pm 509$	$1,098 \pm 609$	$1,572 \pm 1,108$

^a n=12 for postpartum, n=15 for second trimester and n=14 for third trimester

In women receiving darunavir/ritonavir 600/100 mg twice daily during the second trimester of pregnancy, mean intra-individual values for total darunavir C_{max} , AUC_{12h} and C_{min} were 28%, 24% and 17% lower, respectively, as compared with postpartum; during the third trimester of pregnancy, total darunavir C_{max} , AUC_{12h} and C_{min} values were 19%, 17% lower and 2% higher, respectively, as compared with postpartum.

In women receiving darunavir/ritonavir 800/100 mg once daily during the second trimester of pregnancy, mean intra-individual values for total darunavir C_{max} , AUC_{24h} and C_{min} were 34%, 34% and 32% lower, respectively, as compared with postpartum; during the third trimester of pregnancy, total darunavir C_{max} , AUC_{24h} and C_{min} values were 31%, 35% and 50% lower, respectively, as compared with postpartum.

5.3 Preclinical safety data

Animal toxicology studies have been conducted at exposures up to clinical exposure levels with darunavir alone, in mice, rats and dogs and in combination with ritonavir in rats and dogs.

In repeated-dose toxicology studies in mice, rats and dogs, there were only limited effects of treatment with darunavir. In rodents the target organs identified were the haematopoietic system, the blood coagulation system, liver and thyroid. A variable but limited decrease in red blood cell-related parameters was observed, together with increases in activated partial thromboplastin time.

Module 1

Changes were observed in liver (hepatocyte hypertrophy, vacuolation, increased liver enzymes) and thyroid (follicular hypertrophy). In the rat, the combination of darunavir with ritonavir lead to a small increase in effect on RBC parameters, liver and thyroid and increased incidence of islet fibrosis in the pancreas (in male rats only) compared to treatment with darunavir alone. In the dog, no major toxicity findings or target organs were identified up to exposures equivalent to clinical exposure at the recommended dose.

In a study conducted in rats, the number of corpora lutea and implantations were decreased in the presence of maternal toxicity. Otherwise, there were no effects on mating or fertility with darunavir treatment up to 1,000 mg/kg/day and exposure levels below (AUC-0.5 fold) of that in human at the clinically recommended dose. Up to same dose levels, there was no teratogenicity with darunavir in rats and rabbits when treated alone nor in mice when treated in combination with ritonavir. The exposure levels were lower than those with the recommended clinical dose in humans. In a pre- and postnatal development assessment in rats, darunavir with and without ritonavir, caused a transient reduction in body weight gain of the offspring pre-weaning and there was a slight delay in the opening of eyes and ears. Darunavir in combination with ritonavir

caused a reduction in the number of pups that exhibited the startle response on day 15 of lactation and a reduced pup survival during lactation. These effects may be secondary to pup exposure to the active substance via the milk and/or maternal toxicity. No post weaning functions were affected with darunavir alone or in combination with ritonavir. In juvenile rats receiving darunavir up to days 23-26, increased mortality was observed with convulsions in some animals. Exposure in plasma, liver and brain was considerably higher than in adult rats after comparable doses in mg/kg between days 5 and 11 of age. After day 23 of life, the exposure was comparable to that in adult rats. The increased exposure was likely at least partly due to immaturity of the drug-metabolising enzymes in juvenile animals. No treatment related mortalities were noted in juvenile rats dosed at 1,000 mg/kg darunavir (single dose) on day 26 of age or at 500 mg/kg (repeated dose) from day 23 to 50 of age, and the exposures and toxicity profile were comparable to those observed in adult rats.

Due to uncertainties regarding the rate of development of the human blood brain barrier and liver enzymes, Darunavir with low dose ritonavir should not be used in paediatric patients below 3 years of age.

Module 1

Darunavir was evaluated for carcinogenic potential by oral gavage administration to mice and rats up to 104 weeks. Daily doses of 150, 450 and 1,000 mg/kg were administered to mice and doses of 50, 150 and 500 mg/kg were administered to rats. Dose-related increases in the incidences of hepatocellular adenomas and carcinomas were observed in males and females of both species. Thyroid follicular cell adenomas were noted in male rats. Administration of darunavir did not cause a statistically significant increase in the incidence of any other benign or malignant neoplasm in mice or rats. The observed hepatocellular and thyroid tumours in rodents are considered to be of limited relevance to humans. Repeated administration of darunavir to rats caused hepatic microsomal enzyme induction and increased thyroid hormone elimination, which predispose rats, but not humans, to thyroid neoplasms. At the highest tested doses, the systemic exposures (based on AUC) to darunavir were between 0.4- and 0.7-fold (mice) and 0.7- and 1-fold (rats), relative to those observed in humans at the recommended therapeutic doses.

After 2 years administration of darunavir at exposures at or below the human exposure, kidney changes were observed in mice (nephrosis) and rats (chronic progressive nephropathy).

Darunavir was not mutagenic or genotoxic in a battery of *in vitro* and *in vivo* assays including bacterial reverse mutation (Ames), chromosomal aberration in human lymphocytes and *in vivo* micronucleus test in mice.

6. Pharmaceutical particulars

6.1 List of excipients

Film coated tablet:

Tablet contents: Silicified microcrystalline cellulose, Colloidal silicon dioxide, Crospovidone, Magnesium stearate, Opadry II Orange (85F530007)

6.2 Incompatibilities

Not applicable.

6.3 Shelf life

24 months.

6.4 Special precautions for storage

Store below 30°C and protect from moisture.

Module 1

6.5 Nature and contents of container

HDPE Container Pack: 60's count : High density polyethylene containers 150 cc – 38 mm neck

6.6 Special precautions for disposal and other handling

No special requirements

7. Marketing Authorisation Holder and Manufacturing Site Addresses

Marketing authorization Holder:

Name: Hetero Labs Limited

Business Address: 7-2-A2, Hetero Corporate, Industrial Estates, Sanath Nagar,

Hyderabad-500 018, Telangana. India

Telephone : +91-40-23704923/24/25

Telefax : +91-40-23704035/23813359

E-Mail : contact@heterodrugs.com

Manufacturing site:

(Company) Name : Hetero Labs Limited (Unit-III)

Address : # 22 - 110, Industrial Development Area,

Jeedimetla, Hyderabad,

Pin Code - 500 055,

Telangana, India

Telephone : +91 40-23096171/172/173/174

Telefax : + 91 40-23095105

E-Mail : <u>contact@heterodrugs.com</u>

8. Marketing authorization number

9. Date of first registration/renewal of the registration

10. Date of revision of the text